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Horizontal gene transfer (HGT) is one of the most dominant forces
molding prokaryotic gene repertoires. These repertoires can be as
small as �200 genes in intracellular organisms or as large as �9,000
genes in large, free-living bacteria. In this article we ask what is the
impact of HGT from phylogenetically distant sources, relative to
the size of the gene repertoire. Using different approaches for HGT
detection and focusing on both cumulative and recent evolution-
ary histories, we find a surprising pattern of nonlinear enrichment
of long-distance transfers in large genomes. Moreover, we find a
strong positive correlation between the sizes of the donor and
recipient genomes. Our results also show that distant horizontal
transfers are biased toward those functional groups that are
enriched in large genomes, showing that the trends in functional
gene content and the impact of distant transfers are interdepen-
dent. These results highlight the intimate relationship between
environmental and genomic complexity in microbes and suggest
that an ecological, as opposed to phylogenetic, signal in gene
content gains relative importance in large-genomed bacteria.

functional gene content � microbial genomes � scaling �
lateral gene transfer

In sequenced species, the size of the prokaryotic gene reper-
toire spans over an order of magnitude, from �200 genes in

extreme endosymbionts like Carsonella ruddii (1) to �9,000
genes in soil-dwelling bacteria. The common view is that these
differences reflect mainly the external demand for functional
complexity that is imposed by the organism’s lifestyle and
environment (2–4). Indeed, the trends between genome size and
functional gene content variation show that large genomes are
enriched in functions like regulation, signaling, or secondary
metabolism (2), which could allow organisms to reach a higher
degree of ecological diversification.

Along bacterial lineages, gene repertoires are shaped by the
dynamics of horizontal gene transfer (HGT), gene duplications,
losses, and vertical inheritance (5, 6). Gene transfer is an
important mechanism in prokaryotic genome evolution, both
among early ancestors and in present-day ecosystems (7–9), with
recent evidence showing it can lead to large variations in gene
content and genome size in ecological time scales (10, 11).
Virtually all prokaryotic genes may have been involved at least
once in horizontal transfer (5, 7). Nevertheless, because most
transfers take place between closely related organisms (12) with
compatible gene content, it is unclear what is the contribution of
those genes coming from distant lineages, possibly reflecting
ecological rather than phylogenetic associations, to the different
aspects of genome complexity.

In this article, we address that question by measuring both the
cumulative impact of distant HGTs (dHGTs) along each lineage
and its recent history on the leaves of the tree of life, as a function
of genome size. Our study shows that large bacterial genomes
tend to harbor a disproportionate amount of polyphyletic genes,
often shared with other large genomes in distant lineages. An
analysis of the functional bias of distant transfers reveals a strong
connection between the incidence of dHGT across the different
functional groups and their specific trends with respect to
genome size. These results are important for the understanding

of the processes underlying complexification in microbial ge-
nomes and highlight the interdependence between prokaryotic
genome organization and environmental complexity.

Results and Discussion
Cumulative Impact of dHGT Increases Nonlinearly in Large Genomes.
Our first approach to infer the contribution of dHGT to the
size of bacterial gene repertoires builds on the reconciliation
of the presence–absence distributions of gene families with the
tree of life (TOL) (13). This method can detect transfers along
the whole history of descent, as long as they explain patchy
presence–absence distributions. However, transfers that do
not disrupt the phylogenetic distribution of the family will
remain undetected. Our method uses a maximum parsimony
algorithm to reconstruct the evolutionary history of each gene
family on the species tree (14, 15) (see Materials and Methods).
Once ancestral gene contents have been inferred, we can
measure the cumulative impact of dHGT on each genome by
counting how many of those families that contribute to the
species’ gene content have been ‘‘created’’ multiple times
along the evolutionary history. Multiple gene origins will be
inferred in those families that show phylogenetically discor-
dant presence–absence patterns. An illustration of what this
means can be seen in Fig. 1: the red dashed lines follow the line
of descent of a family that is created in two different lineages.
This family will be thus added to the list of families involved
in dHGT in all five descendant species that have kept the gene.
The parsimony reconstruction relies on a predefined cutoff
parameter, �, which equals the number of independent gene
losses that we are willing to accept without invoking multiple
gene origins to explain the family distribution. In other words,
� defines the minimum topological distance, in number of
ancestors, at which we detect transfer events.

Although similar in spirit to a method recently used in ref. 8
to infer the cumulative impact of horizontal transfers, our
methods focus particularly on those presence–absence patterns
that are highly discordant with the species tree, up to our cutoff
�. By increasing �, we cannot only better discriminate horizontal
transfers from gene losses, but, as shown in Fig. 2A, we focus on
those transfers that take place between phylogenetically distant
organisms. Fig. 2 A shows that, for our tree with 333 species, at
topological distances of three ancestors the estimated average
percentage of 16S rRNA nucleotide identity between nodes is
�87%, which in our species set normally crosses the boundary
of taxonomic orders (see Materials and Methods). In this article
we focus on the impact of theses type of transfers, occurring
between relatively distant organisms and contributing to create
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a strong polyphyletic signal in their gene content. We refer to
them explicitly as dHGTs.

The estimation of dHGT based on presence–absence patterns
is greatly affected by how stringent or inclusive the definition of
a protein family is (16). For this reason, we use two extreme
alternative approaches to define the protein families present in
our set of 333 genomes annotated in the String v7.1 database
(17). For the most stringent definition of a protein family, we use
a database of small protein clusters (SPCs), that is cliques of
reciprocal best hits (18), resulting in �140,000 families in our
species set. In the most inclusive definition, we use clusters of
orthologous groups (COGs) (19) and nonsupervised COGs
(NOGs) as defined in String v7.1, which merge the SPCs into
�39,000 COG/NOGs (hereafter referred to simply as COGs).

Fig. 2 B–D summarizes the results of the cumulative count of
dHGT events with respect to genome size by using SPC data.
Because of the uneven species sampling, with the stringent SPC
family definition some genomes have an underrepresentation of
families (many singletons), which is indicated in Fig. 2 B–D by the
size and grayscale intensity of the data points. We see that in
those species with a ‘‘healthy’’ percentage of proteins in SPCs

(e.g., �65%, which holds for �68% of the species) the number
of dHGT families increases nonlinearly with the total number of
families. For those genomes, the relationship between number of
SPCs and number of SPCs involved in dHGT can be described
in log–log scale by a straight line with slope � �1. The greater
�, the faster the increase in proportion of dHGT with respect to
genome size. The linear regression fit in Fig. 2C (for species with
a ratio of at least 65% SPCs/number of genes), gives � �1.6.
These estimates of dHGT in protein clusters were obtained with
� � 5, which traces 350 families back to the last prokaryotic
common ancestor (LPCA). Reconstructions with � � 3 and � �
8, which trace 152 and 605 families back to LPCA, result in �
�1.4 and �2, respectively. The differences in � reflect the fact
that the lower � is the closer the number of dHGT families gets
to saturation, in which case the trend in dHGT is the 1:1 line.
This observation agrees with recent reports about the cumulative
incidence of horizontal transfer in protein families, suggesting
that most families could have been involved at least once in gene
transfer (8). However, the fact that an increase in � results in
higher values of � indicates that larger genomes tend to harbor
a larger proportion of highly polyphyletic families, which require
multiple deletions to be reconciled with the species phylogeny.

The results described above for the case SPCs can be seen even
more clearly with COGs. Because of the more inclusive nature
of the COG data, all our species are well covered by gene
families, and the superlinear trend between number of families
and number of families with dHGT can be seen much more
cleanly in Fig. 2E. Fig. 2E shows the results of reconstructions
based on costs spanning from � � 1 to � � 3, which result in
728–2,834 families in the LPCA. Here, we use smaller values of
� because larger families have their origins closer to the root,
biasing transfers toward nodes at higher taxonomic levels, that is,
between shorter topological distances. The addition of these
ancestral transfers, shared by more lineages, increases the cu-
mulative count of dHGT and produces a more compact trend. In
summary, also in the more inclusive COG family definition we
see that the cumulative impact of phylogenetically incoherent
families increases disproportionately with genome size.

Paradoxically, it is the low incidence of long-distance transfers
in most families (see Fig. S1) that helps explain our results. The
fact that gene families tend to occur within closely related species
implies that there are sets of core genes that percolate toward the
leaves at different taxonomic levels. If a genome grows along a
branch of the tree, it must do so by acquiring genes that are

Fig. 1. Illustration of the ancestral and recent dHGT events on a TOL. Our
analysis focus on the cumulative effect of ancestral dHGT and the recent
history of dHGT in a separate manner. The dashed red lines follow the line of
descent of a gene that has been transferred in an early ancestor, leaving a
patchy presence–absence distribution as evidence of this event. The blue line
shows a recent transfer event. The pairs of genes resulting from this recent
transfer are closest to each other, despite the large distance between the
species where they are found.

Fig. 2. dHGT and its cumulative impact. (A) Smoothed color density representation of the scatterplot between the topological distance and the percentage
of 16S rRNA nucleotide identity between the leaves of the eubacteria subtree. The black line corresponds to the averaged 16S rRNA identities. The red line is
the averaged trend when considering the estimated distances between internal nodes (see Materials and Methods). (B) Number of SPCs with dHGT vs. total
number of SPCs in the genome, with � � 5. (B–D) Shown are the percentages of genes in clusters with the size and color intensity of the data points. For most,
well-covered species, there is a superlinear trend between the size of the gene repertoire and the contribution of dHGT. Encircled species correspond to B.
cereus/anthracis/thuringensis. C shows the same data in log–log scale, and D shows the trend with respect to the total number of genes. The fitted lines have
an � �1.6. (E) Number of dHGT COGs with respect to the total number of COGs in the genome for different values of �.
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outside of this core, thus growing toward a set of potentially
polyphyletic families. Without a core set of genes being conser-
vatively transmitted along lineages, we would see that the
number of dHGT families is at saturation (i.e., a linear trend with
respect to genome size). In agreement, when we randomize the
position of the leaves on the species tree we see that, indepen-
dently of genome size, in average �75% of all SPCs in a genome
have polyphyletic distributions at � � 5, which results in a linear
trend at a high offset.

Interestingly, in the case of the Bacillus cereus/anthracis/
thuringensis (encircled points in Fig. 2B) we detect a much lower
incidence of dHGT than in other genomes of similar size. In fact,
we find that with SPCs the general superlinear trend between
genome size and dHGT does not hold for the Bacilli group, which
fits � �1. Even in the COG data, which focuses on more ancient
dHGT, the � of Bacilli is �20% lower than in the whole species
set. This observation shows that the nonlinear acquisition of
polyphyletic families is not a trivial result of the reconstruction
and suggests that there may be lineage-specific trends in the
impact of dHGT. It this respect, it is important to notice that a
large percentage of our species are within the proteobacteria
(�45%), and that the trends described in Fig. 2 B–E are
therefore dominated by this large phylum (see Fig. S2).

In agreement with the view of prokaryotic genome size as an
adaptation to changing environments, there is a strong correla-
tion between the projected genome sizes of the ancestors
involved in exchange of gene families. The Pearson correlation
between genome size and the average size of their dHGT
partners is r � 0.48 and 0.59 (P � 0.001) for small clusters (� �
5) and COGs (� � 3), respectively. Moreover, this correlation is
lost in the control reconstructions with randomized leaves. The
apparent size assortativeness of the dHGT partners makes sense
if we think that genome size is determined by the complexity of
the environment, because in such case organisms within the
same ecological boundaries should tend to fall within relatively
similar size classes.

Superlinear dHGT Trend Confirmed with Recent Transfers. In addition
to the inference of cumulative dHGT, we followed a comple-
mentary dHGT detection approach by finding proteins whose
closest homologs occur in distant species. Having studied the
cumulative history of transfers with large and small protein
clusters, this is the next and highest level of detail at which we
can study phylogenetically incoherent protein distributions. We
collected Smith-Waterman bidirectional best hits (SW BBH)

between proteins present in species separated by at least eight
branches in the TOL (see SI Text). Similarly as in the previous
section, when we detect a pair of closest homologs in distant
species we hypothesize that the gene has either diverged (or been
lost) multiple times or that it has been horizontally transferred.
In contrast to the presence–absence reconstruction, this method
detects preferentially recent transfers that have not yet under-
gone vertical inheritance. Moreover, whereas the cumulative
analysis focuses on shared histories of transfers, our recent
transfer predictions reflect patterns of DNA exchange that are
specific to the organism lifestyle and environment (9). Indeed,
when we cluster organisms based on the number of recent
transfers between them, we recover groups of species with a clear
ecological signal, such as halophilic bacteria and archaea, or
metabolically coupled species such as the methanogenic archaea
Methanosarcina barkeri, the acetogenic bacteria Moorella ther-
moacetica, known to grow sustainedly on methanol only in
coculture with a hydrogen-consuming methanogens (20), and
the synthropic bacteria Syntrophus aciditrophicus, which can
produce twice more acetate from benzoate in presence of
methanogenic partners (21).

Fig. 3A shows the relationship between genome size and
number of dHGT. The large spread in the data compared with
Fig. 2 reflects a number of factors: a smaller set of proteins in
the y axis, the large biases in species sampling, and cases of strong
ecologically association like those mentioned in the previous
paragraph. Still, the trend between genome size and proportion
of dHGT is consistent with the results from the cumulative
dHGT count and shows that, on average, larger genomes are
composed of a larger proportion of recently transferred genes.
Furthermore, in accordance with the reconstruction results, we
observe that genome size is strongly correlated to the average
genome size of their dHGT partners, r � 0.50 (P � 0.001).

Approximately 93% of the recent transfers shown in Fig. 3
take place between organisms with 16S rRNA nucleotide iden-
tities �90% (see Materials and Methods), which indicates that,
despite the uneven species sampling, our topological distance
cutoff does focus on distant transfers. Moreover, surrogate
methods, which are completely independent of the species tree,
confirm our results. These methods detect recently transferred
genes originating from distant cellular sources based on the idea
that the DNA composition of recently transferred genes should
be more similar to the foreign source than to the rest of the
genomic background (22). One such analysis of 116 prokaryotic
genomes by Nakamura et al. (23) shows that, in clear agreement

A B

Fig. 3. Superlinear enrichment of recent transfers in large genomes (A) Relationship between genome size, in number of proteins, and number of proteins
with bidirectional best hits in species at least branches apart. Despite the larger variation, the trend is consistent with the results shown in Fig. 2. The slope of
the fit is � �1.8. (B) Extrapolation from HGT to gene families confirms superlinear relationship between genome size and dHGT and shows that the superlinear
scaling of gene family groups is related to the dHGT enrichment. The log–log slope is � �1.7.
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with our results, the proportion of recent dHGT, detected by
their aberrant DNA patterns, increases with genome size. We
calculated � � 1.76 based on their data, with a good log–log fit
(R2 � 0.87).

Based on the SW BBH identification of dHGT candidates, we
tried to extrapolate from horizontally transferred genes back to
gene families by detecting those COGs that are enriched in
dHGT. The purpose of this exercise is 2-fold: we wondered
whether by extrapolating to gene families we could obtain a less
noisy estimate of the contribution of recent dHGT with respect
to genome size, and we asked whether the incidence of dHGT on
certain gene families implies their enrichment in larger genomes.
We found a set of 4,250 COGs with significantly high incidence
of dHGT (P � 0.01) and plotted the number of genes in these
COGs vs. the total number of proteins in Fig. 3B. Fig. 3B shows
that selecting COGs based only on their overrepresentation in
dHGT, gives us a group of genes whose abundance scales
superlinearly with genome size. In summary, the different
approaches we have taken to quantify HGT as a function of
genome size converge to point out that larger genomes have a
larger percentage of polyphyletic genes.

dHGT and the Trends Between Genome Size and Functional Content.
In recent years, it has been established that there are supralinear
and superlinear trends between functional categories and ge-
nome size (24–26). Supralinear trends are observed in informa-
tion processing functions like translation, which make a low
percentage of the gene content of larger genomes, compared
with their smaller counterparts. Superlinear trends are seen in
functions like gene regulation, for which large genomes dedicate
a large proportion of their gene content. Having seen the
superlinear relationship between genome size and dHGT, we
wondered whether these two observations are in fact connected,
that is, whether dHGT is biased to occur more often in those
functional groups that make a greater contribution to the gene
content of large genomes.

To measure whether the incidence in dHGT correlates to the
patterns of functional enrichment, Fig. 4A shows the relation-
ship between the relative incidence of recent dHGT in func-
tional groups and the trend of these groups vs. genome size.
The ranking by relative enrichment in dHGT (Fig. 4A, x axis)
is obtained by comparing the abundance of a functional group
in the set of dHGT proteins against the expected frequency if
one would sample the same number of proteins from each
species (see Materials and Methods). In this way we can
measure the dHGT enrichment of a functional group on top
of their size-dependent biases. To get a more specific mapping
between functional groups and dHGT, functional groups are
here defined based on PFAM clans (27). The y axis in Fig. 4A
shows how the number of genes in a PFAM clan scales with the
total number of genes. Values �1 and �1 ref lect supralinear
and superlinear trends, respectively, and are obtained by fitting
a straight line in log–log scale, in the same way we did when
measuring the trends in dHGT. We observe a strong correla-
tion between the level of dHGT enrichment and the nonlin-
earity of the functional trends (r � 0.56, P � 0.001), that is to
say recent dHGT often plays a major role in the evolution of
those functional categories that are enriched in large genomes.
The clans in the upper right corner of Fig. 4A are substrate
binding domains often seen in one-component transcriptional
regulators [periplasmic binding protein (PBP)], generic mem-
brane spanning transporters [drug/metabolite transporter
(DMT) and multiple facilitator superfamily (MFS)], DNA
binding domains [helix-turn-helix (HTH)], and catalytic do-
mains often found in proteins involved in lipid and secondary
metabolism (AB�hydrolase). Probably the most notable out-
liers are the CheY-like two-component systems. The low
incidence of long-distance transfers in these proteins is con-

sistent with the idea that lineage-specific expansions are the
main source of new signal transduction genes in most signaling-
enriched genomes (28). The discrepancy between the position
of the HTH and CheY clans on the x coordinate in Fig. 4A
shows that, although they scale in a similar way with respect to
genome size, transcription regulation via phosphorylation
cascades and direct substrate recognition in one-component
systems (29) follows quite different evolutionary histories (see
Fig. S3).

Fig. 4B provides a more global view of the functional bias of

A

B

Fig. 4. Functional bias of dHGT. (A) dHGT depletion/enrichment vs. the
scaling of PFAM clans with respect to genome size. The y axis corresponds to
the scaling factor of the PFAM clans. Shown are the slopes for those clans
present in at least 90% of the genomes (Fig. S3 shows the same picture for a
cutoff of 70%). On the x axis, values �0 and �0 indicate enrichment or
depletion in dHGT beyond the size-dependent expectation. The size of the
points is scaled according to the goodness of the fit (R2). DMT and MFS appear
often in amino acid transporters. The NADP�Rossmann and methyltransferase
clans cover large numbers of proteins, which could explain their log–log slope
is close to 1. (B) Depletion/enrichment of dHGT across COG functional cate-
gories. For comparison with A, we have added the transcription regulation
group, found under pathways or functional system (subcategory of transcrip-
tion).
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the recent dHGT genes in terms of their COG annotation.
Again, this ranking takes into account that the abundance of
some functional groups depends on genome size. In this
stringent test, only two categories are enriched in dHGT:
defense mechanisms and transcription regulation. Within de-
fense mechanisms the high incidence of dHGT corresponds
specifically to transporters normally involved in extrusion of
toxic compounds and to restriction—modification systems.
The most dHGT-enriched functional category, transcription
regulation, contains one-component systems, which are fu-
sions of DNA binding and substrate recognition domains,
linking in this way environmental stimuli to regulatory re-
sponses in a single protein (29).

Having established the relationship between incidence of
dHGT and trends in functional groups, it is worth noting that the
superlinear trend in dHGT genes or families is rather indepen-
dent of individual functional categories, like transcription reg-
ulation. Removing this category from the data shown in Fig. 3B
has only a marginal effect on slope �, which changes from �1.7
to �1.65. This finding suggests that the trends in functional
content reflect the more general phenomenon of genome growth
by dHGT.

How Can We Explain the Relationship Between Genome Size and
dHGT? In recent years, the idea has grown that horizontal transfer
is the dominant force in expanding the gene repertoires of
bacterial genomes (30). In fact, an analysis of gene phylogenies
in �-proteobacteria suggests that only a small percentage of the
genes found in extant species descend from the most recent
common ancestor of this group (5). This idea implies that
microbial genomes are highly dynamic entities, constantly ac-
quiring and losing genes (30). Thus, as shown in ref. 8, for most
organisms, the percentage of genes transferred at any point in
the species’ history could be close to 100%, independent of size.
However, we have seen here that when we focus on those
polyphyletic genes, which are distributed in a patchy manner
among distant species, a superlinear trend with respect to the
size of the genome emerges. This trend shows that whereas most
genes may have originated from transfers, large genomes tend to
have a greater contribution of phylogenetically discordant genes.
Moreover, all our methods show a strong correlation between
the size of the genomes where those polyphyletic genes are
found. We envision two nonmutually exclusive explanations for
these observations.

One type of explanation is that the intrinsic rate of illegitimate
recombination per gene increases in large genomes as a result of
the larger number of transposons, integrases, or phage elements
that may facilitate the integration of foreign DNA (31–33). In
addition, larger genomes tend to be composed of multiple
plasmids or megaplasmids, which suggest a higher rate of
transmembrane DNA translocation. Another factor that may
increase the intrinsic rate of HGT is the positive correlation
observed between genome size and the modularity of the
biochemical networks (34). In line with the complexity hypoth-
esis (35), horizontal transfers could be more successful in more
modular genome architectures because of the lower, potentially
deleterious, pleotropic effects.

The second type of explanation for the higher effective rate
of distant transfers is that the extrinsic rate of dHGT, driven
by environmental factors, increases in large genomes. A
comparison between metagenomics of farm soil and Sargasso
sea samples shows that soil bacteria not only have larger
genomes but also live in communities with higher cell density
and taxonomic diversity (36, 37). If indeed genome size is
correlated to biodiversity and cell density, one can expect that,
in average, the amount of DNA available for uptake during the
lifetime of a bacterium is larger in large genomes. An attractive
hypothesis is that the increase in phylogenetic diversity in the

environment and the broadening of gene repertoires in the
genome could be a circular process: more complex ecological
interactions in species-rich communities could increase the
demand for larger gene repertoires, which are expanded by
accepting genes from those phylogenetically distant organisms
in the environment.

Horizontal transfer detection is an elusive problem, and often
there is little overlap between different approaches (22). We
therefore rely on independent dHGT detection techniques, which
focus on transfer events that occur on different evolutionary time
scales. These methods converge in showing that large bacterial
genomes tend to be disproportionately enriched in transfers from
distant lineages. Moreover, all of our methods reveal a positive
correlation between the sizes of the donor and recipient genomes.
These results highlight the intimate relationship between genomic
and environmental complexity in microbes.

The clear relationship between the incidence of dHGT and
the scaling factors of functional groups (Fig. 4A) indicates that
the trends in functional categories may be directly linked to
the incidence of dHGT. It is suggestive that some agreement
can be seen as well at the level of specific lineages. In parallel
to what we saw in the cumulative impact of dHGT, in Bacilli,
one-component regulatory systems, which as we saw are often
transferred, scale near-linearly with respect to the whole
protein set (26). Further studies are needed to elucidate to
what extent there are lineage-specific trends in genome com-
plexification and clarify the relationship between the incidence
of polyphyly and the ecological dynamics of microbial com-
munities.

Materials and Methods
Inference of Ancestral dHGT Events. The inference of ancestral dHGT events
is based on a gene content reconstruction along a TOL. As a reference TOL
we use the species tree available in the MicrobesOnline server (www.
microbesonline.org) (38). This tree was pruned down to the 333 prokaryotic
species present in the String 7.1 database (17). The algorithm (detailed in
ref. 15) assigns creation, deletion, and duplication events to the nodes of
the TOL for each gene family (see SI Text). As shown in Fig. S4, this method
results in ancestral genome size distributions that closely resemble that of
extant species. We can find families with dHGT by detecting cases in which
the most parsimonious reconstruction produces gene creations on multiple
ancestors. The cumulative dHG data with SPCs and COGs are shown in
Tables S1 and S2, respectively. Table S3 shows the recent dHGT data.

Measuring 16S rRNA Similarities. Prealigned 16S rRNA sequences were ob-
tained from the Ribosomal Database Project (rdp.cme.msu.edu) (39). Positions
with �5% gaps where removed from the alignments, leaving blocks of 1,375
nt for bacteria and 1,424 nt for archaea, which were used to calculate all
pairwise nucleotide identity percentages within each kingdom. For the pur-
pose of our analysis, 16S rRNA identities between bacteria and archaea were
assumed to be below threshold in all cases. To estimate 16S rRNA distances
involving ancestral nodes, we averaged the identity percentages found be-
tween the groups of extant leaves under the internal nodes in question. We
also checked this simple approach by using the ancestral sequences recon-
structed by an unweighted parsimony algorithm. We find that both methods
give consistent estimates. Based on these estimates, we found that across all
our horizontal transfer detection methods, less than �10% of all transfers are
found at 16S rRNA nucleotide identities �90%, and less than �15% �87%,
which normally crosses the border of taxonomic orders. Moreover, removal of
those transfers between nodes with 16S rRNA nucleotide identities �90% or
even 85%, does not affect the superlinearities (� remains within 90% confi-
dence interval).

Mapping of Functional Categories. We detected the enrichment in dHGT in a
functional group by comparing the observed fraction of dHGT in the group to
the expected frequency if the same number of genes per species were sam-
pled. In this way we control for the biases of dHGT and functional groups
toward large genomes. We calculate the z-score, Z � (observed � E(x))/�(x),
relative to the binomial sampling expectation simply to obtain a ranking of
underrepresented and overrepresented categories. The binomial expectation
was also used to detect COGs enriched in dHGT at P � 0.01 in Fig. 3. Because
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of the dependency between family size and number of expected transfers (Fig.
S1) and the fact that average family size can strongly differ between catego-
ries, we prefer the SW BBH data for our analysis.
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